It adds a bright white color to coffee creamers, baked goods, chewing gums, hard-shell candies, puddings, frostings, dressings, and sauces. But the nanoparticles found in “food-grade” titanium dioxide may accumulate in the body and cause DNA damage—which is one way chemicals cause cancer and other health problems.


Another important application of titanium dioxide is in the production of sunscreen and other skincare products. Titanium dioxide is a key ingredient in many sunscreens due to its ability to reflect and scatter ultraviolet (UV) radiation, providing protection against harmful UV rays. Manufacturers of titanium dioxide for sunscreen products often use special coatings and surface treatments to enhance its UV-blocking properties.
Exposure routes are the pathways that allow ingredients to enter our bodies. Primary exposure routes include:
The color of barium sulphate, predominantly white, plays a crucial role in its identification and application across various industries. With the demand for high-quality barium sulphate soaring, choosing the right supplier becomes vital. Businesses must consider factors like purity, particle size, regulatory compliance, and customer service when sourcing barium sulphate to ensure they receive a product that meets their stringent requirements. As industries continue to evolve, reliable suppliers will remain indispensable in providing the necessary materials to support innovations and advancements.
Different dermal cell types have been reported to differ in their sensitivity to nano-sized TiO2 . Kiss et al. exposed human keratinocytes (HaCaT), human dermal fibroblast cells, sebaceous gland cells (SZ95) and primary human melanocytes to 9 nm-sized TiO2 particles at concentrations from 0.15 to 15 μg/cm2 for up to 4 days. The particles were detected in the cytoplasm and perinuclear region in fibroblasts and melanocytes, but not in kerati-nocytes or sebaceous cells. The uptake was associated with an increase in the intracellular Ca2+ concentration. A dose- and time-dependent decrease in cell proliferation was evident in all cell types, whereas in fibroblasts an increase in cell death via apoptosis has also been observed. Anatase TiO2 in 20–100 nm-sized form has been shown to be cytotoxic in mouse L929 fibroblasts. The decrease in cell viability was associated with an increase in the production of ROS and the depletion of glutathione. The particles were internalized and detected within lysosomes. In human keratinocytes exposed for 24 h to non-illuminated, 7 nm-sized anatase TiO2, a cluster analysis of the gene expression revealed that genes involved in the “inflammatory response” and “cell adhesion”, but not those involved in “oxidative stress” and “apoptosis”, were up-regulated. The results suggest that non-illuminated TiO2 particles have no significant impact on ROS-associated oxidative damage, but affect the cell-matrix adhesion in keratinocytes in extracellular matrix remodelling. In human keratinocytes, Kocbek et al. investigated the adverse effects of 25 nm-sized anatase TiO2 (5 and 10 μg/ml) after 3 months of exposure and found no changes in the cell growth and morphology, mitochondrial function and cell cycle distribution. The only change was a larger number of nanotubular intracellular connections in TiO2-exposed cells compared to non-exposed cells. Although the authors proposed that this change may indicate a cellular transformation, the significance of this finding is not clear. On the other hand, Dunford et al. studied the genotoxicity of UV-irradiated TiO2 extracted from sunscreen lotions, and reported severe damage to plasmid and nuclear DNA in human fibroblasts. Manitol (antioxidant) prevented DNA damage, implying that the genotoxicity was mediated by ROS.
Titanium dioxide is predominantly used as a pigment in products such as paints, coatings, plastics, food, cosmetics, and paper. The ability of TiO2 to scatter light and provide a white color makes it an essential ingredient in achieving high-quality finishes in these applications. However, the production of titanium dioxide can be complex and costly, given that it involves raw materials such as ilmenite and rutile, as well as advanced processing technologies. Manufacturers are continuously striving to optimize costs without compromising quality, making the search for affordable suppliers a top priority for many businesses.
The Scientific Committee on Consumer Safety (SCCS) warns against sprayable products and powders that may expose users’ lungs to titanium dioxide through inhalation (10).
It's hard to determine the total amount of food products that have titanium dioxide because federal regulations don't require all producers to list its use on ingredient labels, but the list of foods containing the substance certainly doesn't end with Skittles.
Phthalates on the fast-food menu:Chemicals linked to health problems found at McDonalds, Taco Bell
A 2012 study published in the journal Environmental Science & Technology noted that children are especially exposed to titanium dioxide because of the food that contains the food additive and is particularly marketed to children, including candy and cakes.
Conclusion
In sunscreen, titanium dioxide is used as a barrier to keep the sun's ultraviolet (UV) rays from damaging your skin. It's processed into much smaller particles than what goes into food, called nanoparticles. In this form, it becomes transparent, and also absorbs UV light so it doesn't reach your skin.

